Actualización

This commit is contained in:
Xes
2025-04-10 12:24:57 +02:00
parent 8969cc929d
commit 45420b6f0d
39760 changed files with 4303286 additions and 0 deletions

View File

@@ -0,0 +1,181 @@
<?php
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace Zxing\Common\Reedsolomon;
/**
* <p>This class contains utility methods for performing mathematical operations over
* the Galois Fields. Operations use a given primitive polynomial in calculations.</p>
*
* <p>Throughout this package, elements of the GF are represented as an {@code int}
* for convenience and speed (but at the cost of memory).
* </p>
*
* @author Sean Owen
* @author David Olivier
*/
final class GenericGF {
public static $AZTEC_DATA_12;
public static $AZTEC_DATA_10;
public static $AZTEC_DATA_6;
public static $AZTEC_PARAM;
public static $QR_CODE_FIELD_256;
public static $DATA_MATRIX_FIELD_256;
public static $AZTEC_DATA_8;
public static $MAXICODE_FIELD_64;
private $expTable;
private $logTable;
private $zero;
private $one;
private $size;
private $primitive;
private $generatorBase;
public static function Init(){
self::$AZTEC_DATA_12 = new GenericGF(0x1069, 4096, 1); // x^12 + x^6 + x^5 + x^3 + 1
self::$AZTEC_DATA_10 = new GenericGF(0x409, 1024, 1); // x^10 + x^3 + 1
self::$AZTEC_DATA_6 = new GenericGF(0x43, 64, 1); // x^6 + x + 1
self::$AZTEC_PARAM = new GenericGF(0x13, 16, 1); // x^4 + x + 1
self::$QR_CODE_FIELD_256 = new GenericGF(0x011D, 256, 0); // x^8 + x^4 + x^3 + x^2 + 1
self::$DATA_MATRIX_FIELD_256 = new GenericGF(0x012D, 256, 1); // x^8 + x^5 + x^3 + x^2 + 1
self::$AZTEC_DATA_8 = self::$DATA_MATRIX_FIELD_256;
self::$MAXICODE_FIELD_64 = self::$AZTEC_DATA_6;
}
/**
* Create a representation of GF(size) using the given primitive polynomial.
*
* @param primitive irreducible polynomial whose coefficients are represented by
* the bits of an int, where the least-significant bit represents the constant
* coefficient
* @param size the size of the field
* @param b the factor b in the generator polynomial can be 0- or 1-based
* (g(x) = (x+a^b)(x+a^(b+1))...(x+a^(b+2t-1))).
* In most cases it should be 1, but for QR code it is 0.
*/
public function __construct($primitive, $size, $b) {
$this->primitive = $primitive;
$this->size = $size;
$this->generatorBase = $b;
$this->expTable = array();
$this->logTable =array();
$x = 1;
for ($i = 0; $i < $size; $i++) {
$this->expTable[$i] = $x;
$x *= 2; // we're assuming the generator alpha is 2
if ($x >= $size) {
$x ^= $primitive;
$x &= $size-1;
}
}
for ($i = 0; $i < $size-1; $i++) {
$this->logTable[$this->expTable[$i]] = $i;
}
// logTable[0] == 0 but this should never be used
$this->zero = new GenericGFPoly($this, array(0));
$this->one = new GenericGFPoly($this, array(1));
}
function getZero() {
return $this->zero;
}
function getOne() {
return $this->one;
}
/**
* @return the monomial representing coefficient * x^degree
*/
function buildMonomial($degree, $coefficient) {
if ($degree < 0) {
throw new \InvalidArgumentException();
}
if ($coefficient == 0) {
return $this->zero;
}
$coefficients = fill_array(0,$degree+1,0);//new int[degree + 1];
$coefficients[0] = $coefficient;
return new GenericGFPoly($this, $coefficients);
}
/**
* Implements both addition and subtraction -- they are the same in GF(size).
*
* @return sum/difference of a and b
*/
static function addOrSubtract($a, $b) {
return $a ^ $b;
}
/**
* @return 2 to the power of a in GF(size)
*/
function exp($a) {
return $this->expTable[$a];
}
/**
* @return base 2 log of a in GF(size)
*/
function log($a) {
if ($a == 0) {
throw new \InvalidArgumentException();
}
return $this->logTable[$a];
}
/**
* @return multiplicative inverse of a
*/
function inverse($a) {
if ($a == 0) {
throw new Exception();
}
return $this->expTable[$this->size - $this->logTable[$a] - 1];
}
/**
* @return product of a and b in GF(size)
*/
function multiply($a, $b) {
if ($a == 0 || $b == 0) {
return 0;
}
return $this->expTable[($this->logTable[$a] + $this->logTable[$b]) % ($this->size - 1)];
}
public function getSize() {
return $this->size;
}
public function getGeneratorBase() {
return $this->generatorBase;
}
// @Override
public function toString() {
return "GF(0x" . dechex(intval($this->primitive)) . ',' . $this->size . ')';
}
}
GenericGF::Init();

View File

@@ -0,0 +1,268 @@
<?php
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace Zxing\Common\Reedsolomon;
/**
* <p>Represents a polynomial whose coefficients are elements of a GF.
* Instances of this class are immutable.</p>
*
* <p>Much credit is due to William Rucklidge since portions of this code are an indirect
* port of his C++ Reed-Solomon implementation.</p>
*
* @author Sean Owen
*/
final class GenericGFPoly {
private $field;
private $coefficients;
/**
* @param field the {@link GenericGF} instance representing the field to use
* to perform computations
* @param coefficients array coefficients as ints representing elements of GF(size), arranged
* from most significant (highest-power term) coefficient to least significant
* @throws IllegalArgumentException if argument is null or empty,
* or if leading coefficient is 0 and this is not a
* constant polynomial (that is, it is not the monomial "0")
*/
function __construct($field, $coefficients) {
if (count($coefficients) == 0) {
throw new \InvalidArgumentException();
}
$this->field = $field;
$coefficientsLength = count($coefficients);
if ($coefficientsLength > 1 && $coefficients[0] == 0) {
// Leading term must be non-zero for anything except the constant polynomial "0"
$firstNonZero = 1;
while ($firstNonZero < $coefficientsLength && $coefficients[$firstNonZero] == 0) {
$firstNonZero++;
}
if ($firstNonZero == $coefficientsLength) {
$this->coefficients = array(0);
} else {
$this->coefficients = fill_array(0,$coefficientsLength - $firstNonZero,0);
$this->coefficients = arraycopy($coefficients,
$firstNonZero,
$this->coefficients,
0,
count($this->coefficients));
}
} else {
$this->coefficients = $coefficients;
}
}
function getCoefficients() {
return $this->coefficients;
}
/**
* @return degree of this polynomial
*/
function getDegree() {
return count($this->coefficients) - 1;
}
/**
* @return true iff this polynomial is the monomial "0"
*/
function isZero() {
return $this->coefficients[0] == 0;
}
/**
* @return coefficient of x^degree term in this polynomial
*/
function getCoefficient($degree) {
return $this->coefficients[count($this->coefficients) - 1 - $degree];
}
/**
* @return evaluation of this polynomial at a given point
*/
function evaluateAt($a) {
if ($a == 0) {
// Just return the x^0 coefficient
return $this->getCoefficient(0);
}
$size = count($this->coefficients);
if ($a == 1) {
// Just the sum of the coefficients
$result = 0;
foreach ($this->coefficients as $coefficient ) {
$result = GenericGF::addOrSubtract($result, $coefficient);
}
return $result;
}
$result = $this->coefficients[0];
for ($i = 1; $i < $size; $i++) {
$result = GenericGF::addOrSubtract($this->field->multiply($a, $result), $this->coefficients[$i]);
}
return $result;
}
function addOrSubtract($other) {
if ($this->field !== $other->field) {
throw new \InvalidArgumentException("GenericGFPolys do not have same GenericGF field");
}
if ($this->isZero()) {
return $other;
}
if ($other->isZero()) {
return $this;
}
$smallerCoefficients = $this->coefficients;
$largerCoefficients = $other->coefficients;
if (count($smallerCoefficients) > count($largerCoefficients)) {
$temp = $smallerCoefficients;
$smallerCoefficients = $largerCoefficients;
$largerCoefficients = $temp;
}
$sumDiff = fill_array(0,count($largerCoefficients),0);
$lengthDiff = count($largerCoefficients) - count($smallerCoefficients);
// Copy high-order terms only found in higher-degree polynomial's coefficients
$sumDiff = arraycopy($largerCoefficients, 0, $sumDiff, 0, $lengthDiff);
for ($i = $lengthDiff; $i < count($largerCoefficients); $i++) {
$sumDiff[$i] = GenericGF::addOrSubtract($smallerCoefficients[$i - $lengthDiff], $largerCoefficients[$i]);
}
return new GenericGFPoly($this->field, $sumDiff);
}
function multiply($other) {
if(is_int($other)){
return $this->multiply_($other);
}
if ($this->field !== $other->field) {
throw new \InvalidArgumentException("GenericGFPolys do not have same GenericGF field");
}
if ($this->isZero() || $other->isZero()) {
return $this->field->getZero();
}
$aCoefficients = $this->coefficients;
$aLength = count($aCoefficients);
$bCoefficients = $other->coefficients;
$bLength = count($bCoefficients);
$product = fill_array(0,$aLength + $bLength - 1,0);
for ($i = 0; $i < $aLength; $i++) {
$aCoeff = $aCoefficients[$i];
for ($j = 0; $j < $bLength; $j++) {
$product[$i + $j] = GenericGF::addOrSubtract($product[$i + $j],
$this->field->multiply($aCoeff, $bCoefficients[$j]));
}
}
return new GenericGFPoly($this->field, $product);
}
function multiply_($scalar) {
if ($scalar == 0) {
return $this->field->getZero();
}
if ($scalar == 1) {
return $this;
}
$size = count($this->coefficients);
$product = fill_array(0,$size,0);
for ($i = 0; $i < $size; $i++) {
$product[$i] = $this->field->multiply($this->coefficients[$i], $scalar);
}
return new GenericGFPoly($this->field, $product);
}
function multiplyByMonomial($degree, $coefficient) {
if ($degree < 0) {
throw new \InvalidArgumentException();
}
if ($coefficient == 0) {
return $this->field->getZero();
}
$size = count($this->coefficients);
$product = fill_array(0,$size + $degree,0);
for ($i = 0; $i < $size; $i++) {
$product[$i] = $this->field->multiply($this->coefficients[$i], $coefficient);
}
return new GenericGFPoly($this->field, $product);
}
function divide($other) {
if ($this->field !==$other->field) {
throw new \InvalidArgumentException("GenericGFPolys do not have same GenericGF field");
}
if ($other->isZero()) {
throw new \InvalidArgumentException("Divide by 0");
}
$quotient = $this->field->getZero();
$remainder = $this;
$denominatorLeadingTerm = $other->getCoefficient($other->getDegree());
$inverseDenominatorLeadingTerm = $this->field->inverse($denominatorLeadingTerm);
while ($remainder->getDegree() >= $other->getDegree() && !$remainder->isZero()) {
$degreeDifference = $remainder->getDegree() - $other->getDegree();
$scale = $this->field->multiply($remainder->getCoefficient($remainder->getDegree()), $inverseDenominatorLeadingTerm);
$term = $other->multiplyByMonomial($degreeDifference, $scale);
$iterationQuotient = $this->field->buildMonomial($degreeDifference, $scale);
$quotient = $quotient->addOrSubtract($iterationQuotient);
$remainder = $remainder->addOrSubtract($term);
}
return array($quotient, $remainder );
}
//@Override
public function toString() {
$result = '';
for ($degree = $this->getDegree(); $degree >= 0; $degree--) {
$coefficient = $this->getCoefficient($degree);
if ($coefficient != 0) {
if ($coefficient < 0) {
$result.=" - ";
$coefficient = -$coefficient;
} else {
if (strlen($result) > 0) {
$result .= " + ";
}
}
if ($degree == 0 || $coefficient != 1) {
$alphaPower = $this->field->log($coefficient);
if ($alphaPower == 0) {
$result.='1';
} else if ($alphaPower == 1) {
$result.='a';
} else {
$result.="a^";
$result.=($alphaPower);
}
}
if ($degree != 0) {
if ($degree == 1) {
$result.='x';
} else {
$result.="x^";
$result.= $degree;
}
}
}
}
return $result;
}
}

View File

@@ -0,0 +1,192 @@
<?php
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace Zxing\Common\Reedsolomon;
/**
* <p>Implements Reed-Solomon decoding, as the name implies.</p>
*
* <p>The algorithm will not be explained here, but the following references were helpful
* in creating this implementation:</p>
*
* <ul>
* <li>Bruce Maggs.
* <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps">
* "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li>
* <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf">
* "Chapter 5. Generalized Reed-Solomon Codes"</a>
* (see discussion of Euclidean algorithm)</li>
* </ul>
*
* <p>Much credit is due to William Rucklidge since portions of this code are an indirect
* port of his C++ Reed-Solomon implementation.</p>
*
* @author Sean Owen
* @author William Rucklidge
* @author sanfordsquires
*/
final class ReedSolomonDecoder {
private $field;
public function __construct($field) {
$this->field = $field;
}
/**
* <p>Decodes given set of received codewords, which include both data and error-correction
* codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
* in the input.</p>
*
* @param received data and error-correction codewords
* @param twoS number of error-correction codewords available
* @throws ReedSolomonException if decoding fails for any reason
*/
public function decode(&$received, $twoS) {
$poly = new GenericGFPoly($this->field, $received);
$syndromeCoefficients = fill_array(0,$twoS,0);
$noError = true;
for ($i = 0; $i < $twoS; $i++) {
$eval = $poly->evaluateAt($this->field->exp($i + $this->field->getGeneratorBase()));
$syndromeCoefficients[count($syndromeCoefficients) - 1 - $i] = $eval;
if ($eval != 0) {
$noError = false;
}
}
if ($noError) {
return;
}
$syndrome = new GenericGFPoly($this->field, $syndromeCoefficients);
$sigmaOmega =
$this->runEuclideanAlgorithm($this->field->buildMonomial($twoS, 1), $syndrome, $twoS);
$sigma = $sigmaOmega[0];
$omega = $sigmaOmega[1];
$errorLocations = $this->findErrorLocations($sigma);
$errorMagnitudes = $this->findErrorMagnitudes($omega, $errorLocations);
for ($i = 0; $i < count($errorLocations); $i++) {
$position = count($received) - 1 - $this->field->log($errorLocations[$i]);
if ($position < 0) {
throw new ReedSolomonException("Bad error location");
}
$received[$position] = GenericGF::addOrSubtract($received[$position], $errorMagnitudes[$i]);
}
}
private function runEuclideanAlgorithm($a, $b, $R)
{
// Assume a's degree is >= b's
if ($a->getDegree() < $b->getDegree()) {
$temp = $a;
$a = $b;
$b = $temp;
}
$rLast = $a;
$r = $b;
$tLast = $this->field->getZero();
$t = $this->field->getOne();
// Run Euclidean algorithm until r's degree is less than R/2
while ($r->getDegree() >= $R / 2) {
$rLastLast = $rLast;
$tLastLast = $tLast;
$rLast = $r;
$tLast = $t;
// Divide rLastLast by rLast, with quotient in q and remainder in r
if ($rLast->isZero()) {
// Oops, Euclidean algorithm already terminated?
throw new ReedSolomonException("r_{i-1} was zero");
}
$r = $rLastLast;
$q = $this->field->getZero();
$denominatorLeadingTerm = $rLast->getCoefficient($rLast->getDegree());
$dltInverse = $this->field->inverse($denominatorLeadingTerm);
while ($r->getDegree() >= $rLast->getDegree() && !$r->isZero()) {
$degreeDiff = $r->getDegree() - $rLast->getDegree();
$scale = $this->field->multiply($r->getCoefficient($r->getDegree()), $dltInverse);
$q = $q->addOrSubtract($this->field->buildMonomial($degreeDiff, $scale));
$r = $r->addOrSubtract($rLast->multiplyByMonomial($degreeDiff, $scale));
}
$t = $q->multiply($tLast)->addOrSubtract($tLastLast);
if ($r->getDegree() >= $rLast->getDegree()) {
throw new IllegalStateException("Division algorithm failed to reduce polynomial?");
}
}
$sigmaTildeAtZero = $t->getCoefficient(0);
if ($sigmaTildeAtZero == 0) {
throw new ReedSolomonException("sigmaTilde(0) was zero");
}
$inverse = $this->field->inverse($sigmaTildeAtZero);
$sigma = $t->multiply($inverse);
$omega = $r->multiply($inverse);
return array($sigma, $omega);
}
private function findErrorLocations($errorLocator) {
// This is a direct application of Chien's search
$numErrors = $errorLocator->getDegree();
if ($numErrors == 1) { // shortcut
return array($errorLocator->getCoefficient(1) );
}
$result = fill_array(0,$numErrors,0);
$e = 0;
for ($i = 1; $i < $this->field->getSize() && $e < $numErrors; $i++) {
if ($errorLocator->evaluateAt($i) == 0) {
$result[$e] = $this->field->inverse($i);
$e++;
}
}
if ($e != $numErrors) {
throw new ReedSolomonException("Error locator degree does not match number of roots");
}
return $result;
}
private function findErrorMagnitudes($errorEvaluator, $errorLocations) {
// This is directly applying Forney's Formula
$s = count($errorLocations);
$result = fill_array(0,$s,0);
for ($i = 0; $i < $s; $i++) {
$xiInverse = $this->field->inverse($errorLocations[$i]);
$denominator = 1;
for ($j = 0; $j < $s; $j++) {
if ($i != $j) {
//denominator = field.multiply(denominator,
// GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
// Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug.
// Below is a funny-looking workaround from Steven Parkes
$term = $this->field->multiply($errorLocations[$j], $xiInverse);
$termPlus1 = ($term & 0x1) == 0 ? $term | 1 : $term & ~1;
$denominator = $this->field->multiply($denominator, $termPlus1);
}
}
$result[$i] = $this->field->multiply($errorEvaluator->evaluateAt($xiInverse),
$this->field->inverse($denominator));
if ($this->field->getGeneratorBase() != 0) {
$result[$i] = $this->field->multiply($result[$i], $xiInverse);
}
}
return $result;
}
}

View File

@@ -0,0 +1,31 @@
<?php
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace Zxing\Common\Reedsolomon;
/**
* <p>Thrown when an exception occurs during Reed-Solomon decoding, such as when
* there are too many errors to correct.</p>
*
* @author Sean Owen
*/
final class ReedSolomonException extends \Exception {
}
?>